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Thickness-mode quartz resonators have long been used for timing and

frequency control. It is well known that a change in temperature results

in a change in the resonance frequencies of such quartz plates. Thus, a

major requiremnt for precision frequency applications is that these
temperature deviations are minimized. This report summrizes a detailed

numerical investigation of the temperature sensitivity of doubly rotated
quartz resonators. Various measures of sensitivity are used for the

temperature range -40 to 800C. Several cuts of quartz with stable tempera-

ture behavior are described and compared.
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THE T PERAML'RE SENSITIVITY OF DCX]NY 2fJIE fAT RE-90NARS

Thickness-mode quartz resonators have long been used for timing and
frequency control. It is well known that a change in temperature results

in a change in the resonance frequencies of such quartz plates. Thus, a
major requirement for precision frequency applications is that these

temperature deviations are minimized. This report summarizes a detailed
numerical investigation of the temperature sensitivity of doubly rotated

quartz resonators. Various measures of sensitivity are used for the

temperature range -40 to 800 C. Several cuts of quartz with stable tempera-

ture behavior are described and compared.
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2.

We begin by summarizing the theory of piezoelectric plate vibrations.

We assume the geometry of the plate depicted in Figure 1. The plate is of

thickness 2h and has the y-axis as a normal. Furthermore, it is assumed to

be infinite in extent in the x-z plane. These geometrical considerations

imply that and vanish for the field quantities and we thus havethu Zave

one-dimensional motion in the y-direction, i.e., the so-called simple

thickness modes of vibration.

!'4

Figure 1: PLATE GE METY
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In the following, a subscripted index following a coma denotes

differentiation with respect to that spatial index. To further simplify

the notation, we will adopt the summation convention that repeated indices

are to be summed over. The stress equations of motion are:

Tiji = P (1)

where Tij is the stress tensor, p the material density (assumed constant)

and j is the jth component of the displacement vector. Under the assump-

tion of an infinitesimal deformation, we have the Cauchy strain tensor:

1
Si] =- ( + "j,i )  (2)

The electromagnetic characterization of the problem : chieved using a

quasi-static approximation which produces the equati for the electric

displacement Di, the electric field Eu, and potential

Di i = 0 (3)

Ej = - (4)

The remaining equations are obtained from thermodynamic considerations.

Let the material under consideration be characterized by the elastic

stiffness tensor at constant electric field, Cijkl , the piezoelectric

stress tensor, eijk, and the dielectric tensor at constant strain t ij"
These material constants are related to the field quantities by the linear

piezoelectric constitutive relations:

Tij CijklSkl -nijE n (5)

Di = eiklSkl + inEn  (6)

Equations 1-6 can be combined, yielding the simplified 4 equations:

Cijkluk,li + ekij ,ki =  P ;j (7)

eikluk,li - fik ',ki = 0 (8)

Our geometrical considerations imply that , Ukli vanish unless

i=i=2, so 7 and 8 become for the infinite plate:

C2jk2uk, 22 + e22 j ,22 = p  (9)

e2k2uk,22 - '22 I,22 = 0 (10)

10



We now use (10) in (9), yielding

/ j e22je2k 2  Uk,22 w2u
C,.1,2 + _____ I k,2= -pwU (1

622

where u is assumed to have a harmonic time dependence. We define the

piezoelectrically stiffened elastic constants by:

+ e 22 j e2k2

2jk2 '2C2jk2 + e22____ (12)

Then (U1) becomes a wave equation:

S + =w2 U =0 (13)2jk2uk,22 + ~

Note that this is really 3 coupled equations. The solutions we seek

are acoustic plane waves of the form:
iuj(x,y,z,t) = gje v (14)

where 9 is a constant. Substitution of (14) into (13)' yields the

equation

2 = 0 '5
FIj2 -

If we define the "matrix"1  such that. 7k = 'k2, then (15) may be

written as:

_ = 0 (16)

where i = P v2 and 5' is the vector with components iF 92, and 5 3 . In

this form, we clearly have an eigenvalue problem (although, strictly

speaking. r is not a matrix, i.e., a second rank tensor). The eigenvalues,

;I(n)' determine the propagation velocities of the three modes by:
xi 1/2

v(i) = )(17)

1



The solution of the eigenvalue problem yields 3 roots, or modes, which are

ordered by the relation:

a >  b "bc (18)

and the convention is to refer to the modes by the letters a, b and c. The

eigenvector corresponding to a mode gives the direction cosines of the

displacement.

In addition to the eigenvalues and eigenvectors, there is another

parameter which is important in characterizing the modes. This is the
piezoelectric coupling constant, which is a measure of the ratio of
electrical energy to mechanical energy of the vibrations. Following

Ballato (1977) and Tiersten (1969), we define the coupling constant of node

m by:

k(m) = sj(m) e2 2 j (M) (19)

where (i) is the eigenvector corresponding to (m). It is worth empha-

sizing that the eigenvalues, eigenvectors and coupling constants are
completely determined by the material constants for the thickness modes of

infinite plates; these parameters are independent of the boundary condi-
tions. The resonance frequencies, in contrast, depend critically on the

boundary conditions. The conditions that we impose are that the surfaces

are traction-free and driven by a sinusoidal voltage:

T j2 T2 j = 0 at y = + h (20)

+ oe i w t  at y = h (21)

where we have assumed that the plate is of thickness 2h. We apply these
boundary conditions to our general solution which is a linear combination
of the modal eigenvectors. The result is a transcendental equation whose

solutions give the allowable frequencies of vibration for the plate. This
equation can be expressed in the form (Tiersten 11969]):

3 2 tan (wh/V(n)) 1 (22)
n=L wh/v(n)

12



The solutions to this equation yield the resonance frequencies. This

equation cannot be solved in general and demonstrates the coupling of the

resonance frequencies by the boundary conditions. In the general case, the

frequency solutions to (22) cannot be identified with a certain mode.

Fortunately, we can approximate (22) by a simpler equation when the

coupling constants are small. This approximation is very reasonable for

quartz, where k(n ) is usually less than 0.10 (10%). If the eigenvalues are

well separated in addition to the coupling constants being small, then the

resonance frequencies can be approximated by the solutions to the uncoupled

equation

kn2  tan (wk/vn) (23)

(wk/vn

(Ballato & Iafrate [1976]). Note that in this approximation the modal

resonances are independent. The solution to (23) can in turn be

approximated for small kn by using the Laurent series expansion of tan x

about x = n/2:

SVn r 4kn2 
w. = (2m + 1) 2 n 1 2 (2m + 1)2 (24)

where m = 0,1,... . Note that the first term is just the solution to

wh
tan - = d , (25)

vn

The correction term is clearly negligible for high overtones, i.e., for

large m (Bechmann et al [19621). We shall neglect this correction in the

following and approximate the resonance frequencies by the solution to

(25):

w. - (2m + 1) (26)
2 h

Converting these angular frequencies to cycles per unit time, the resonance

frequencies are given by
vn

fro = (2m + 1) -- (27)
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The theory we have sumnarized so far applies to a general, anisotropic
piezoelectric substance; there are no constraints placed on the material
constants. The most general piezoelectric substance is an arbitrarily
anisotropic (triclinic) crystal without center of symmetry. In this case,
there are 45 independent material constants required to specify the
elastic, piezoelectric and dielectric tensors. However, we are interested
in the properties of doubly rotated quartz, so we need not consider such an
arbitrary substance. Quartz is a member of the trigonal, trapezohedral
crystal class (32, D3 ) (see, e.g., Mason [1950]). In the crystalline
coordinate system, there are only 10 independent material constants (Mason
[1950]. Tiersten [1969], Bechmann [1956]): 6 elastic constants, 2
piezoelectric constants and 2 dielectric constants. These constants have
been measured by Bechmann (1956). The elastic, piezoelectric and
dielectric tensors for an arbitrary cut of quartz may be determined by
applying the tensor transformation rules to the tensors in the crystalline

coordinate system. The most general transformation between two coordinate
systems is given by the Euler angle formulation. (Goldstein [1950]). Such
a transformation is specified by the Euler angles ( x , A , e ) (using the
convention of Goldstein). We are, however, interested in doubly rotated
quartz crystals; the plate orientations are specified by the two angles
(P and 0 relative to the crystal axes (see Figure 2). The case of both
4) and 0 being zero results in the so-called Y-plate (i.e., y-axis normal

to plate) with material constants given by those in the crystal system.
For non-zero (F and 0 , the material constants are determined by applying
the transformation x to the unrotated tensors, where

-sin. cose cos+ cose sinel
X L- n I sine -cos+ sine cosel (28)

cos* sin+ 0

If we denote the tensors relative to the crystal axes by primes, the
elastic, piezoelectric and dielectric tensors for the doubly rotated cuts
are given by:

14
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Cijkl = XimXjnXkoxpC'mop

eijk = xilxjmkneh lm (29)

6ij = XikXjl 'kl

Thus, given * and e, we calculate the material constants from (29). The
eigenvalues, eigenvectors, coupling constants and approximate resonance
frequencies are then calculated using these rotated tensors.

k 16_



3. TEMPERAM BEHAVIOR

The resonance frequencies of piezoelectric plates are functions of

temperature. The standard approach to this temperature behavior is

phenomenological and assumes that the plate is in thermal equilibrium. We

then assume that the equilibrium resonance frequency is an analytic

function of temperature and expand it in a Taylor series about a reference

state with frequency fo and temperature TO:

0 (n

f = fo + -- (T-T o )  (30)n1(nI a T(n)

We may rewrite this in terms of a fractional change in frequency:

f-f0 f° O [ 1  1  0 (n) f  n
n= = 1 T ( (T-To)n (31)

to fo n= n f 0  T--To

The standard notation for the temperature expansion coefficients is Tf (n)

or explicitly:

1 C) (n) f

Tf n f = (n) = -T - (32)n fo 0 T~n  T--To

Indeed, we may write the temperature expansion of any quantity g about a

reference state (g0 ,To) as:

g-go Tg(n) (T-To) (33)

go n=l

i It has been empirically established that a cubic expansion suffices to

adequately describe the temperature effects on the quartz resonances

(Beckmann 119561, Ballato (1977]). We shall refer to the cubic frequency

expansion as the relative frequency difference function, A f/f:

17



/f 3
-n Tf~n ) (T-To)n (34)

f n=l

Furthermore, we will assume that a cubic expansion suffices to describe the
temperature behavior of other material parameters, such as the elastic
constants. This is a reasonable approximation provided the temperature
range is small.

We shall now proceed to relate the temperature coefficients of the
relative frequency difference function to the temperature coefficients of
the material parameters for quartz. We shall do so only for the funda-
mental frequencies. We have, from (27). the modal frequencies for an
infinite plate of thickness 2k:

fn = - (35)

We shall approximate the infinite plate by a finite one of dimensions d and
1. This is reasonable provided d >> 2h and 1 >> 2h. The density is then

given by

M
p - (36)

2hld

The modal frequencies are thus:

1 4/ X ld
1 1 -- (37)

2 2hM

where M is the plate mass. Straightforward differentiation gives:

Tf(1)= 1 T (1) _ Th(1) + -i T1(I ) + Td(l) (38)
2 n 2 2 2

Note that the temperature coefficients T1 (1), Td(1) and Th( 1 ) are just the

coefficients of thermal expansion in the x. y and z directions. These are

18



measurable quantities. The temperature coefficient of the eigenvalue,

T n(1), can be expressed in terms of the material constants. The
characteristic equation (16) yields a cubic for ;n, which we write as:

X3 - A 12 + BX + D = 0 (39)

After differentiation and algebraic manipulations, we obtain:

T /1\ Xf2ATA - Xn BTB~l) - D TD(])

(1 2 L 2 A Xn + B

The temperature coefficients of A, B and D are determined by the eigenvalue

equation. We have:

A =['I + r2 + 33 (41)

B P f2 + r 22 3  + PF 3

23 2 -k 12  2(42)

D =f [1 2 + r 2 F13 + P33 V12

-F11 f22 I33  -212 2  3F133

- 2 F12 P-23 [713 (43)

where

2jk2 '= C2jk2 + e22 je 2 k2  (44)622

and for ease of notation, we have written instead of F2"k2-

In a straightforward but tedious fashion, the temperature coefficients

of A. B and C may be found to be:

19



TA X ~ Tp 1 + 22 T (l) + r33 Tp 1 (45)

(1) 1 122 2  () + T + P22 33 T + T ()

T B B P2 2  P22 +T 3

+F R P TrP3(l) +T F (1 23 2 T P23()(46)

2P13 2 T (1) 2- 2 232  T (

TD (1) - D)1. T~ (1) j2 -P2f3 +2 2 3 Tp(P1 P[ 3  -12  13
+r2Tr2() 312 P3P1+2 3 T"G r~1 2 11 -P3 2

+ 33  T1P (1) P12 411 P22  + 2 12 TP2(1) P3 3 P12  - P31 P32)
(47)

The last step in this derivation of the first order temperature coefficient
of frequency is to relate the temperature coefficients of ij to those of
the elastic, piezoelectric and dielectric constants. This is done using
equation (44). We shall assume that the temperature variation of the
piezoelectric and dielectric constants can be neglected compared to that of
the elastic constants. Thus, from (44), we have in this approximation:

Tk (1) [ TC (1) (48)
Pk C2jk2 2jk2

20



Let us suumrize these results. We have seen how the first order tempera-

ture coefficient of the relative frequency difference function may be

calculated from the material constants and from the first order temperature

coefficients of the elastic constants and the coefficients of thermal
expansion. The steps in this calculation are straightforward but algebra-
ically tedious. The calculation of the second and third order temperature

coefficients of frequency in terms of the coefficients of thermal expansion

and the elastic constants follows the same procedure and will not be done

here. (Kahan [1982], Ballato [1977]).

The temperature coefficients of the elastic constants and the coeffi-

cients of thermal expansion depend on the orientation angles of the quartz

plate with respect to the crystalline axes. This clearly implies that the

frequency temperature coefficients depend on these orientation angles.

Thus, we need to know how to calculate the temperature coefficients of a

particular plate given those in the crystalline axes. Therefore, we need

to determine the transformation properties of the temperature coefficients.

We will consider a general tensor of order n, denoted by gi ...in (T)

where we have explicitly included the temperature dependence. Now, for any

temperature T, the transformation between any 2 coordinate systems is

specified by:

gjl,.j(T) = xjl,kl... xjinkn g'kl .... k n(T) (49)

where xij is the coordinate transformation from the primed to the unprimed

axes. We therefore have:

... /n (T) = gjl, n (T) - g 1 jTO) (50)

=Xjlkl"" Xjn'kn 9 'kl""kn(T)

21



Now, the temperature expansions in the 2 coordinate systems may be written:

gil i (T) = i i(To) Tg i) 1("' n gl"'" in j i... i T-)J (51)

1 n

and for the primed axes:

k , = ..kn(To) T (T.Jo) (52)
""k 1" .. (2

(In (51) and (52), there is no implied summation.)

Combining (50), (51) and (52), and equating like powers of (T-'Io), we

obtain the following relation between the temperature coefficients in the

two coordinate systems:

1

T () X,k X 'k T (J)
ii,...i n  gi1 i  n n g'ki,...k (53)

11..Pn 1 n

Note that in this formula there is no implied sumration over the indices

i,...,in on the right-hand side. Using the transformation rule (53), the

temperature coefficients of the elastic constants (a fourth rank tensor)

for a doubly rotated plate can be calculated from those in the crystalline

coordinate system using the coordinate transformation (28). Similarly, the

coefficient of thermal expansion, a vector (i.e., first rank tensor) can

also be calculated from (53). The temperature coefficients of frequency

can thus be calculated for any doubly rotated quartz plate from those of

thermal expansion and the elastic coefficients in the crystalline system.

Indeed, the coefficients for the elastic constants in the crystalline

system were determined by Bechmann (1956) by transforming the measured

coefficients of various standard cuts of quartz.

22



4.

We shall now use the theory of the previous two sections to perform

calculations for doubly rotated quartz plates. All calculations were

performed on the Air Force Geophysics Lab's (AFGL) CDC 6600 computer. The
material constants and their temperature coefficients are those given by

Bechmann et al (1962).

We begin by depicting in Figure 3 the values of the coupling constants

for the three modes of quartz. The coupling constants were calculated from

(19) for the doubly rotated cuts. Ballato (1977) presented similar graphs

using a different definition of the angles defining the doubly rotated

cuts. The curves of Figure 3 are a representative sampling of the coupling

constant for doubly rotated cuts. (Due to the symmetry of the quartz

crystal lattice, we need only consider 0 in the range (00,600) and 8 in

the range (00,900)). We shall have frequent recourse to these curves in

the following search for cuts with desirable temperature characteristics;

for a cut to be useful, it must kave a reasonable amount of piezoelectric

coupling.

The widespread applications c quartz plates owe much to the early

discovery of the AT cut (0 = 00, 9 = 35.09310). From Figure 3, we see that

the AT cut has a relatively high ( t. 9%) coupling constant for the C mode
and zero coupling for modes a and b. In Figure 4, we plot the relative
frequency difference function (mode C) about the reference temperature TO =

250C for the temperature range (-49,80). The graph exhibits the

temperature stability that makes the AT cut the preferred choice in many

applications. This stability derives from the flatness of the curve in the

vicinity of 250 C. This flatness is. of course, a consequence of the

derivative vanishing at 250, or equivalently, the first order temperature
coefficient of frequency (for mode C) having a zero at 0 00 and 0
35.0931.
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Another of the cxxcuwnly used cuts is the BT cut, def ined by 0 = 600 and 0
48.99420. The relative frequency difference for moKde b is displayed in
Figure 5. Like the AT cut, the BT cut owes its temperature stability to
the vanishing of the first order temperature coefficient of frequency. The
general shapes of the AT and BT frequency curves are, however, very
different. The BT curve is parabolic; it is the second order temperature
coefficient which dominates the cubic frequency expansion. In contrast,
the AT curve is clearly of cubic form. These 2 general forms, i.e.,
parabolic and cubic. are representative of the shapes of the relative
frequency difference curves for arbitrary 4) and 0

The commnon feature of the AT and BT cuts that makes these cuts usef ul
is the vanishing of the first order temperature coefficients. Bechmann et
al. (1962) mapped out the locations of the zeroes in the f irst order
temperature coef ficient. In Figure 6, the loci of zeroes is displayed f or
modes b and c (mode a has no zeroes) . This previous work represents a
search for quartz cuts with stable temperature behavior using a very
"local" measure of sensitivity. If the first order temperature coefficient
vanishes, the changes in frequency due to a small deviation in temperature
from 250C will also be small (order of (T-T) 2) . However, large temperature
deviations may produce large changes in frequency, as is evident for the AT
and BT cuts from Figures 4 and 5.

In many applications, the range of temperature variation is too large
to rely on a local measure of sensitivity. For these cases, a more
" global" measure is required. that is, a measure which takes into account
the variations over the entire temperature interval of interest. Further-
more, modern electronic devices are capable of compensating for or
correcting small frequency changes; this is accomplished by following a
known relative frequency difference curve.

The first "global" measure that we will consider uses an integral
measure of temperature sensitivity. Specifically, the measure is the
integral of the absolute value of the relative frequency difference from
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-400 to 800, i.e.,

M1(,8 = 
80  d A (54)

-40 f

where the notation explicity displays the dependence of the measure on the

cut angles 0 and 0 . In Figure 7, we present the results of the calcula-

tions of Mt (0 , 8) for the three modes of quartz plates. These curves
give us a rough indication of the location and magnitudes of the minima in

temperature sensitivity. The minima for mode a are seen to be very weak
and will not be considered further. The minima for modes b and c are of

reasonable order (i.e., relative magnitude of approximately 100) and
warrant further investigation. The actual locations and magnitudes of the
b and c mode minima were calculated by minimizing M1 (0 , 8 ) with respect
to 0 for fixed 0. The results, for 0 in increments of 10, are given in

Figure 8 for mode c and Figure 9 for mode b. The absolute minima for

mode c occurs for 0= O0 , while for mode b, it occurs for 0 = 600. It is no

coincidence that these are the 0-values of the AT and BT cuts,
respectively. However, the 0 values of the minima do not agree exactly
with those of the AT and BT cuts; the minima do not have vanishing first
order temperature coefficients. For mode c, the minima occurs at 0 = 00,

( = 35.1314; for mode b. it occurs at 0 = 60", 0 = 49.38330. The

relative frequency difference curves of these minima are given in Figures 4
and 5 alono ,:Yith the corresponding standard cut. The minima for modes b

and c thus occur in very close proximity to the zeroes of the first order

temperature coefficients. This is, in fact, true of all the minima

displayed in Figures 8 and 9. Indeed, if we were to plot the Oand 0

angles of the minima in Figures 8 and 9, we would produce a curve very

similar to Figure 6, the loci of the zeroes of the first order temperature
coefficient.

We have seen that the least sensitive cut, with respect to an integral
measure is given by mode c. 0= 00, 8= 35.13040. The c mode minima is
superior by more than a factor of 10 to the b mode minima. In fact, from

Figure 8, we see that any c mode minima with 0<500 is superior to the b

mode minima. However, we must use more than the magnitude of the minimum
to coLmpre different cuts effectively. The goal here is to find cuts that
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are useful and so various practical criteria mrust also be considered. The
first such criterion we will treat is angle stability: for a minimrum to be
useful, the temperature sensitivity muist riot change greatly if the angle is
changed slightly. Such angular deviations or errors are likely to occur in
the manufacturing process. To evaluate this angular stability numerically,
we will consider the effect of errors in the 8 value of 10' (0.1670). For
the minima in Figures 8 and 9, the integral measure was also calculated for

the same o value, but with 8 changed by +10' and -10'. The upper curves
in Figures 8 and 9 represent the larger of the integrals for the +10' and

-10' cases. It is thus a reasonable measure of angular stability. The
deficiencies of the (P = 00, node c minimum are apparent: it is highly
sensitive to small changes in angle. Indeed, a 10' change in 8 produces a
relative change in the integral measure of several hundred percent. This

effect of small 8 errors on the relative frequency difference is demon-
strated in Figure 10. This angular instability is also demonstrated by the

very sharp minima for mode c at O)= 00 given in Figure 7. In contrast, the

minima for 0 = 600 and mode b is seen in Figure 7 to be somewhat rounded
and not as abrupt. This is borne out by Figure 9, where a 10' deviation in

0 produces a relative change of about 2% in the temperature measure.

Thus, the b mode miniumum is very stable. This stability is exhibited by
the relative frequency difference curves in Figure 11. Because of this

extreme angular instability, the 4) = 00, c mode minimum cannot be
practically considered. However, as mentioned previously, there are other
c mode minima which have smaller minima than the b mode. Taking into
account angular stability, inspection of Figure 8 reveals two candidates
for usefulc mode cuts: P = 2 7 0o E 8=34.06440) and - = 420 (80
33.290l60 ). The effect of theta errors on the relative frequency difference
for these cuts is depicted in Figures 12 and 13.

A second practical criterion is, as mentioned earlier, the

piezoelectric coupling constant. The mode b minimum (4) = 6 00, 8

49.38330) is very close to the standard BT cut (4) = 600, 8 = 48.99420).
Thus, we would expect this minimum to satisfy most practical criteria with
regard to the coupling constant. For this reason, we will restrict the
calculations of coupling to the mode c minima, especially the two mentioned
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above. In Figure 14, we display the results of the calculation of the

coupling constant for mode c along the mode c minimum curve of Figure 8.

This graph shows that for 0 = 270, the minimum has a coupling constant of

about 3.7%, while it is approximately 2.2% for the 0 = 420 minimum. By
coxarison, the mode b minimum ( O= 600) has larger piezoelectric coupling.

approximately 5.5% (see Figure 3).

The last practical criterion we will consider pertains to the separa-

tion in frequency of the three modes. From equation (27) we have that the

fundamental frequencies of the three modes may be written as:

1f n =  - -n  (55)

In this form, it is clear that we may treat the separation of eigenvalues

instead of frequency. In Figure 15, the eigenvalues of all 3 modes are

plotted along the mode c minimum curve of Figure 8. For both of our

prospective c-mode minima, the c-mode eigenvalue is well separated from

those of the other two modes. This criterion is not really applicable to

our b-mode minimum because, for O= 600 and E = 49.38330, the piezoelectric

coupling vanishes for modes a and c (see Figure 3). There is thus no

difficulty in this case due to the interference of the plate vibrations f

the other modes. This is an advantage of the mode b minima over our 2 mode

c minima, which have piezoelectric vibrations for all three modes present.

Let us summarize our results for the integral measure of temperature

sensitivity. We have located four cuts which minimize this sensitivity and

have outlined some of the advantages and disadvantages of these cuts. The

absolute minimum (0 = 00, mode c) is extremely sensitive to errors in the

cut angles and this instability renders precision applications very

difficult. Of the remaining three cuts, the weakest minimum ( 4 = 600,

mode b) possesses the greatest angular stability, the largest coupling

constant, and has only one mode present. However, the range of variation

of the relative frequency difference curve may be too large (i.e., the

minimum too weak) to be practical.
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Next,* we shall consider another measure of sensitivity. Define the
range measure by:

M2()e m 'ax- min- (56)
ff

where the miaximum and minimum are over the temperature range (-400, 800).
As for the integral measure, we calculate M2(, 0) for each mode for 4) in
increments of 100 and e in the range 0o to 900. The results are displayed
in Figure 16. It is instructive to compare Figures 16 and 7. It is seen

that the shapes of the curves are virtually identical. Similar calcula-
tions were performed for a third measure of temperature sensitivity using a
slope

M3(0,e max I - T 1 (57)

The curves for this measure will be canitted since they are indistinguish-

able from those of the other two measures. For all three measures, the
minima for mode a are weak and are not treated further. Using the measures

M 2 and 143, curves of the minima for f ixed 4) were calculated for modes b
and c for 0 in increments of 10. The resulting curves are not shown since
they ar- identical in shape to Figures 8 and 9. It follows that the
overall features of the temperature sensitivity using M2 and M3 are the
same as f or Ml. In all three measures, we can identify three cuts ( 4) =
00, 270 and 420) which minimize the mode c sensitivity and one ( O)= 600)
which minimizes that of mode b. We ommmnrize the magnitudes and locations
of these minima in Tablel1. It can be seen that the locations of the
minima for different measures differ only very slightly. Indeed, the

angular locations of these minima deviate only slightly fromi the locations

of zero first order temperature coefficients. It can also be showin that
the features of these minima with regard to angular stability, coupling and
frequency separation are the same for all three measures. The relative

* advantages and disadvantages of these 4 minima are the same for all three

measures and are as stated earlier. I
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TABLE 1: Minina Using Measures MI, M2 and M3

ODE 0 M1 min M2 min M3 min

8 M1 0 M2 7 M3

C 0 35.1304 .4035x10-3  35.1720 .1181x10-4  35.3242 .3782x10-6

C 27 34.0644 .2246x10 - 2  34.0216 .5897x10- 4  34.1258 .1964x10- 5

C 42 33.2906 .1564x10- 2  33.1912 .4102x10 - 4  33.1697 .1369x10- 5

b 60 49.3832 .5385x10 - 2  48.9622 .1393x10- 3  48.5290 .4495x10 - 5
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The three measures that we have investigated all measure the sensi-

tivity of a single mode. A slight generalization of these methods uses two
modes, that is. easures the temperature sensitivity of the difference in

frequency between two modes. Let mode i have temperature ccx.fficient aj (j
= 1,2,3) and mode j have coefficient bj (j = 1,2,3). By definition, we

have:

3
fi(T) =fi(To)[I + ak (T - TO)k] (58)

1

3
fj(T) =fj(To) I + 1i b(T -[TO ) k  (59)

Define the frequency difference between modes i and j by:

Sij(T) = fi(T) - fj(T) (60)

Substitution of (58) and (59) gives:

3
Sij(T) = Sij(To) + E akfi(To) - bkfj(To) 1 (T - To)k (61)

k=I

The fractional change in the frequency difference is thus:

, .sij(T) - sij(T) (62)

Sij Sij (TO)

3

= Wia k _ Wjbk] (T-To)k (63)

k=1
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where we have defined the weights:

fi (To)
Wi =iTO (64)

fi(To) - fj(To)

wj= fT 0  (65)
fi(TO) - fj(TO)

These weights are dimensionless quantities which can be written in terms of

the eigenvalues. For the fundamental frequencies of modes i and j, substi-

tution of (55) into (64) and (65) gives:

Wi = (66)

Wj = j (67)

These can also be written in terms of the modal velocities as:

v.
Wi = (68)

vi - vj

Wj = - i - (69)
vi - vj

Equation (63), with the weights defined by (66) and (67), was used to

investigate the temperature sensitivity. Note that the quantity Sij(T) is

a directly measurable quantity. The sensitivity was measured using the
integral of the absolute value of (63) from -400 to 800. The calculations
and procedure were identical to those for the single mode measures. The

results are sunmrized graphically in Figure 17. These graphs should be

compared to the single mode data of Figure 7. This comparison shows that
all the minima of the double mode measure are very weak. None of the

minima of Figure 17 is less than 0.01. In contrast, our single mode
integral measure has minima nuch less than this value (see also Table 1).
The double mode measure will not be iviestigated further since it is

inferior to the single mode measures.
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5.

Previous work on the temperature sensitivity of quartz resonances used
a local measure of temperature sensitivity, nanely, the zeroes of the first
order temperature coefficients. We have presented results of calculations
using other measures of sensitivity in the temperature range (-40, 800)
and have found that the minima for fixed 0 occur in close proximity to the
locus of zeroes of the first order temperature coefficients. Indeed, we
have found that the locations of the minima vary only slightly between the
different measures; the locations of the minima for the integral measure,
the range measure and the slope measure are all in close proximity to each
other and to the zeroes of the first order temperature coefficient. It

seems likely that this characteristic is attributable to the cubic nature

of the relative frequency difference expansion. Nonetheless, our results

do go beyond an analysis of the zeroes of the first order temperature

coefficient. Specifically, the measures we have used allow us to compare

the temperature sensitivity of the various minima according to their

magnitude. In addition, we have used three other practical criteria in

comparing these doubly rotated cuts: angular stability, separation of modal

frequencies and coupling strengths. In this fashion, we have presented
four cuts with relatively stable temperature behavior. None of these four
cuts is clearly superior to the others, but each has its advantages and

disadvantages.
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